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S UMMARY

A six-degree-of-freedom simulation analysis has been performed for the Space

Shuttle Orbiter during entry from Mach 10 to 2.5 with realistic off-nominal condi-

tions using the flight control system usually referred to as the blended entry

digital autopilot specified in May 1978. _e off-nominal conditions included the

following: (1) aerodynamic uncertainties in extrapolating from wind-tunnel-derived

characteristics to full-scale flight characteristics, (2) an error in deriving the

angle of attack from onboard instrumentation, (3) the failure of two of the four

reaction control-system thrusters on each side (design specification), and (4) a

lateral center-of-gravity offset and vehicle asymmetries.

With combinations of the above off-nominal conditions, the control system per-

formed satisfactorily with a few exceptions. Tne cases that did not exhibit satis-

factory performance displayed the following main weaknesses. Marginal performance

was exhibited at hypersonic speeds for a few cases with a sensed angle-of-attack

error of 4 ° . At supersonic speeds the system tended to be oscillatory, particularly

with increased rudder effectiveness. The system diverged for several cases because

of the inability to hold lateral trim. Several system modifications were suggested

to help solve these problems and to maximize safety on the first flight: alter the

elevon-trim and speed-brake schedules to keep the elevon more positive at the higher

supersonic speeds, delay switching to rudder trim until the rudder effectiveness is

adequate, and reduce the overall rudder loop gain. These and other modifications

were incorporated in a flight-control-system redesign in May 1979.

INTRODUCTI ON

A reusable Earth-to-orbit transportation system known as the Space Shuttle has

been developed by the National Aeronautics and Space Administration (NASA). Tne

Space Shuttle is designed to insert payloads of up to 29 500 kg into a near-Earth

orbit, retrieve payloads already in orbit, and land with a payload of up to

14 500 kg. The Space Shuttle consists of an Orbiter, an external fuel tank, and two

solid rocket boosters (SRB). _e SRB's will be recovered after each launch for

limited reuse. The external tank is designed for one use and is not recovered.

The Orbiter will have the capability to enter the Earth's atmosphere, glide up

to a 2040-km cross range, and land horizontally. A closed-loop entry guidance system

has been developed to provide the necessary commands for either the automatic flight

control system or a pilot-operated, augmented flight control system. A general

description of the Space Shuttle configuration and mission is given in reference I,

and the Orbiter avionics are described in reference 2.

The initial flights of the Space Shuttle are designed to verify the vehicle

flight worthiness. The first flight was designed to demonstrate the safe ascent and

return of the Orbiter and crew for conservative flight conditions. The vehicle was

launched from the John F. Kennedy Space Center into a 220-km circular orbit inclined

38 °. After approximately 20 orbits, a deorbit maneuver occurred, which was followed

by the entry and landing at the Hugh L. Dryden Flight Research Facility of the Ames

Research Center. A further description of this flight is presented in reference 3.



The NASALangley ResearchCenter performed evaluations of the guidance and
flight control system as it evolved for the first mission. These evaluations were
performed to cover system uncertainties thoroughly, identify weaknesses, and suggest
appropriate modifications to maximize mission safety. The analysis reported herein
is concerned with the flight control system, usually referred to as the blended entry
digital autopilot, which was specified by the contractor in May 1978. This control
system, which was developed under the guidance of the Lyndon B. Johnson Space Center,
has evolved from the system analyzed in reference 4. The analysis of the flight
control system was performed with the aid of a six-degree-of-freedom simulation with
man-in-the-loop capability. The flight regime studied was from a Machnumber of
approximately 10 and an altitude of 50 km down to the initiation of the terminal-
area-energy management(TAEM)guidance phase, which occurs at an altitude of approxi-
mately 26 km at a Machnumberof 2.5. This 360-sec segment of the entry represents
the period where the Orbiter performs its most extreme maneuvers, where the aerody-
namic parameters are undergoing significant changes as the vehicle decelerates from
hypersonic to low-supersonic velocities, and where the angle of attack is lowered
from 36° to 10°. These simulation studies considered the center of gravity to be
located at 66.25 percent of the body reference length with a lateral center-of-
gravity offset of 0.0381 m (I .5 in.) toward the right wing (the maximumamount
allowed by Shuttle design specifications). In addition, two of the four yaw thrust-
ers on each side were assumedto be inoperable (off). The design specification calls
for the Space Shuttle Orbiter to be able to fly safely with this condition. To these
were added the aerodynamic uncertainties (ref. 5) that are intended to encompassany
differences that might occur between the wind-tunnel data base and actual flight
values. Theseuncertainties are based on the scatter in the wind-tunnel data and
historical comparisons of flight and wind-tunnel data for various aircraft and
lifting-body configurations. In addition to uncertainties, projected errors in
deriving angle of attack from onboard instrumentation were included in the simula-
tions. Since the Orbiter has no method of directly measuring angle of attack until
velocity has been reduced to Mach2.5, this error was initially estimated to be as
muchas +4 ° . Without the aerodynamic uncertainties and the sensed angle-of-attack

error, the flight control system is able to fly the entry mission safely.

Following the study reported in reference 4, the roll and yaw channels of the

flight control system were extensively modified to decrease the sensitivity to errors

in sensed angle of attack. The study described herein is similar to the study

reported in reference 4 except for the modified control laws. The baseline preflight

trajectory for the first Space Shuttle launch (STS-I) was studied with these aerody-

namic uncertainties and angle-of-attack error, and control-system modifications were

suggested to handle the problems that were encountered.

SYMBOL S

All coefficients and vehicle rates are in the body-axis system. Computer sym-

bols used in the figures are shown in parentheses. Values are given in SI Units and,

where considered useful, also in U.S. Customary Units. Measurements and calculations

were made in U.S. Customary Units.

b reference wing span, m

C
I

C

rolling-moment coefficient,

effective-dihedral parameter,

Rolling moment/q Sb

5CI/5_, deg -I



C
16a

C
16r

Cm

C n

C

np
C

n6a

C

n6r

Cy

Cy
P

CY6r

DNy

Isp

I x

Iy

I Z

Ixy

IXZ

Iyz

M

Ny

Pc

P (P)

rolling-moment coefficient due to aileron deflection,

_C t/_6a, deg -I

rolling-moment coefficient due to rudder deflection,

_C I/_6r, deg -I

pitching-moment coefficient, Pitching moment/q Sc

yawing-moment coefficient, Yawing moment/q Sb

-I

directional-stability parameter, 5Cn/5 _, deg

yawing-moment coefficient due to aileron deflection,

_Cn/_6a, deg -1

yawing-moment coefficient due to rudder deflection,

_Cn/_6r, deg -I

side-force coefficient, Side force/q S

side-force coefficient due to sideslip angle, deg -I

side-force coefficient due to rudder deflection,

6Cy/_6r, deg -1

mean aerodynamic chord, m

stability-axis yaw rate due to side acceleration,

deg/se c

acceleration due to gravity, where Ig = 9.8 m/sec 2

(32o152 ft/sec 2)

specific impulse, sec

moment of inertia about body roll axis, kg-m 2

2
moment of inertia about body pitch axis, kg-m

moment of inertia about body yaw axis, kg-m 2

product of inertia in body XY-plane, kg-m 2

product of inertia in body XZ-plane, kg-m 2

product of inertia in body YZ-plane, kg-m 2

Mach number

side acceleration, g units

commanded roll rate, deg/sec

roll rate about body axis, deg/sec
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p!

q_

r

r ' (RPRIME)

S

VR

X,Y,Z

(ALPHA)

(ALPHAC)
c

(B ETA )

A

6 (DELA)
a

6 (DELBF)
BF

6 (DELE)
e

6 (DELR)
r

6SB (DELSB)

8

(PHI)

(PHICM)
C

Ab bre via ti ons :

DAP

GDRC

KGDA

RCS

= p + (180g sin 8 tan _)/_V R

free-stream dynamic pressure, Pa

yaw rate about body axis, deg/sec

= r - (180g sin # cos 8)_V
R

2
reference area, m

Earth's relative velocity, m/sec

roll, pitch, and yaw body axes, respectively

angle of attack, deg

commanded angle of attack, deg

sideslip angle, deg

increment

aileron-deflection angle,

[(Left elevon) - (Right elevon)]/2, deg

body-flap-deflection angle (positive down), deg

elevator-deflection angle (positive down),

[(Left elevon) + (Right elevon)]/2, deg

rudder-deflection angle (positive trailing edge left),

deg

speed-brake-deflection angle, deg

pitch angle about body axis, deg

standard deviation

roll angle about body axis, deg

commanded roll angle, deg

digital autopilot

scheduled rudder forward-loop gain

scheduled aileron forward-loop gain

reaction control system



TAEM terminal-area-energy management

(YAWJET) numberof yaw RCSthrusters firing (positive right side thrusters)

A dot over a symbol indicates the rate of change with time.

DESCRIPTIONOFSPACESHUTTLEORBITER

The physical characteristics of the Orbiter are summarized in table I. _ne
longitudinal center of gravity is located at 66.25 percent of the body reference
length measured from the nose. A sketch of the Orbiter and its control effectors
(control surfaces and reaction-control-system (RCS)thrusters) is shownin fig-
ure I. The baseline trajectory is depicted on a world map in figure 2, and figure 3
shows the time history of selected nominal trajectory parameters.

Guidance System

The guidance system has separate algorithms for the three different guidance
regimes: entry, terminal-area-energy management,and autoland. The entry guidance
is designed to take the Orbiter from the atmospheric interface, at an altitude of
I 22 km, downto the initiation of the terminal-area-energy-management (TAEM)phase
which occurs at an altitude of approximately 26 km at Mach2.5. At an altitude of
approximately 3 km, the autoland guidance is engagedand directs the Orbiter until
touchdown. Since the current study was concerned with flight from M_ 10 to 2.5,
only the entry algorithm was needed. During entry, the angle of attack follows a
preselected schedule, whereas roll angle is modulated to control both downrange and
cross range. Additional information on the guidance algorithm can be obtained in
reference 6.

Flight Control System

The flight control system specified in May 1978 converts either guidance-system
commandsor pilot-control commandsinto aerodynamic control'surface deflections and
reaction-control-system (RCS)thruster firings. It also takes rate gyro and accel-
erometer feedbacks and provides stability, damping, and turn-coordination outputs to
these effectors. The aerodynamic control surfaces depicted in figure I include ele-
vons (which are used as ailerons and elevators), a rudder with speed-brake capabil-
ity, and a body flap for longitudinal trim. The RCSthrusters are used to supplement
control about the roll, pitch, and yaw axes. The roll and pitch thrusters are used
only during the early portion of the entry at low dynamic pressures. The yaw RCS
thrusters are used down to Mach I. The thrust level per thruster used in this study

was 3870 N, and the Is_ was 289 sec. The flight control system, usually referred

to as the blended entry digital autopilot (DAP), has several system changes through-

out the trajectory depending upon the guidance algorithm and the relative effective-

ness of the various control effectors. From the entry interface down to the TAEM

interface, in the automatic mode, the control system nulls angle-of-attack errors by

using the pitch thrusters (until dynamic pressure increases to 960 Pa) and the ele-

vons. From the TAEM interface to landing, in the automatic mode, a normal-

acceleration error is nulled by the elevons. In the manual mode, the control system

converts stick deflections to rate commands. The body flap is a trim device used to

maintain the average elevon deflection (elevator) near a preselected profile. Since

the elevons are also used as ailerons, the aileron characteristics are a function of



the elevator deflection, and thus this preselected profile is used to help insure the
proper aileron characteristics. Tne elevon and body-flap time histories for the
nominal entry are shownin figure 4. Tne speed brake follows a schedule down to
Mach0.9, after which it follows a guidance-system command. BetweenMach10 and 0.9,
the speed brake is used to provide a pitch-up momentto aid in longitudinal trim.
Below Mach0.9, the speed brake is used to control dynamic pressure. The nominal
speed-brake time history is also shownin figure 4. A detailed description of the
longitudinal channel and the speed-brake and body-flap channels is presented in
appendix B of reference 6.

Control about the lateral-directional axes for a dynamic pressure less than

96 Pa is achieved with roll and yaw RCS thrusters only. As the dynamic pressure

increases, the ailerons are added for control; and at a dynamic pressure of 480 Pa,

the roll thrusters are turned off. From initial entry into the atmosphere down to

about Mach 1.5, the control system operates in a "spacecraft mode," where the roll-

rate command is directed to the yaw channel to produce a yawing rate and a small

sideslip angle 6. Tnis _ generates a rolling moment because of the positive

effective dihedral of the Orbiter. In this mode, the ailerons are used for turn

coordination and directional trim. _e spacecraft mode was chosen for two reasons.

First, the aerodynamics for this flight regime of the Orbiter are such that the

vehicle exhibits roll-reversal characteristics; that is, if the ailerons are used to

roll the vehicle with no yaw input from any other surface or RCS, the vehicle will

start to roll in the desired direction and then roll in the opposite direction. Tne

rudder is ineffective at flight conditions above Mach 4, and thus the RCS system

would be required to provide much of the maneuver coordination. Second, to roll

about the velocity vector at high values of _ requires a large yawing moment about

the body axis. After Mach 1.5, the control system switches to a more conventional

aircraft mode where ailerons are used for roll control and the rudder is used for

turn coordination. Between Mach 3 and 1.5, the flight control system is a blend

between those two control modes which results in a blended-system designation. The

roll and yaw channels of the flight control system are described in more detail in

appendix A.

DESCRIPTION OF SIMULATION

The Reentry Flight Dynamics Simulator (RFDS) used for this study is a nonlinear,

six-degree-of-freedom, interactive digital-computer program with man-in-the-loop

capability developed by the Langley Research Center. The cockpit is not a replica of

the Space Shuttle Orbiter cockpit, but it does have the instrumentation and controls

necessary for engineering investigations. The vehicle response was recorded on time-

history charts. A more complete simulation description is available in reference 6.

A static aeroelastic model, described in appendix B, was added to the simulation for

this study.

TEST CONDITIONS

The off-nominal conditions considered in this evaluation involved aerodynamics,

vehicle asymmetries, sensed angle-of-attack errors, side accelerometer errors, and

yaw RCS thruster failures. The Space Shuttle design specification requires that the

Orbiter be able to fly safely with two of the four yaw thrusters on each side inoper-

able (off). Because of this requirement, all runs for the study had such a failure.
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The nominal and off-nominal aerodynamics used in this study were obtained from
reference 7. The off-nominal values were estimated 3_ envelopes of possible varia-
tions between wind-tunnel-derived characteristics and full-scale flight characteris-
tics. Becausea normal distribution was assumed, the variations could be either
added to or subtracted from the nominal aerodynamics. The aerodynamic data base
consisted of the six force and momentcoefficients for the airframe with undeflected
controls. These coefficients are functions of Machnumber, angle of attack, and
sideslip angle. To these are added the force and momentcontribution of the control
surfaces (functions of Machnumberand angle of attack). The elevons (whenused as
an elevator), the body flap, and the speed brake are all considered to have nonlinear
aerodynamic increments which are functions of Machnumber, angle of attack, and sur-
face position. Both the aileron and rudder have linear aerodynamics that are a func-
tion of Machnumberand angle of attack, with the aileron aerodynamics also being a
function of the average elevon position. Theoff-nominal aerodynamics are a function
of Machnumber.

All possible lateral-directional combinations involving momentsgenerated by the
bare airframe and the aileron were considered in this study. Table II shows the
nomenclature used in the discussion of the results to describe these 16 cases of off-
nominal conditions. Examination of the aerodynamic data of reference 7 revealed that

the rudder derivatives C , CY6 r, and C , are approximately linearly dependent;16r n6r

therefore, they were varied together. In addition, none of the rudder derivatives

were allowed to differ in sign from the nominal. Figure 4 of reference 4 shows the

range of off-nominal lateral-directional stability and the aileron and rudder control

effectiveness. The curves were generated by assuming that the angle of attack was

exactly the angle commanded by the guidance algorithm and that the elevator position

was the desired position used by the body-flap-control logic. The aileron is used

for directional trim, as shown in appendix A of the present paper. This requirement

places a great deal of dependence on C • Reference 4 indicates that because of

n6a

the uncertainity in the data, C could switch signs below Mach 5.5 and the magni-
n6a

tude could vary greatly above Mach 5.5. Thus, the control system should show a high

sensitivity to uncertainties in C . This sensitivity will be confirmed in the

n6a

discussion of the results that follow.

Reference 7 also presents the longitudinal aerodynamic characteristics. How-

ever, longitudinal uncertainties were not, in general, included in the present study

because reference 8 showed that variations in longitudinal aerodynamics do not impact

the control of the Orbiter unless (1) the vehicle no longer can be trimmed or (2) the

elevator must move to a position that adversely affects the aileron characteristics.

This control system uses the body flap to maintain the proper elevator position;

thus, no effects of pitching-moment variation would be expected until the body flap

was forced to its limit and the elevator had to move from its desired position, which

did not occur in the flight regime of this study.

Vehicle asymmetries, because of manufacturing uncertainty, have been estimated

and were included in the modeling of the system. The values were given in coeffi-

cient form and are AC I = 0.0004, AC n = -0.0002, and AC m = ±0.0034. Also, a lat-

eral center-of-gravity offset of 0.0381 m (1.5 in.) was included to account for manu-

facturing and payload-loading uncertainties.



Becauseangle of attack is not measureddirectly during the portion of the entry
investigated in this study, it must be derived from the onboard inertial platform
data. Whenerror sources such as platform drift and winds are considered, angle of
attack can be in error by as muchas ±4°. Since the flight control system (see
appendix A) uses angle of attack extensively, the system should be sensitive to this
potential error in sensed _.

Tne accelerometer assembly is mountedin the forward avionics bay (ref. 2) and
is subject to an estimated 3o alignment uncertainty of 0.9 °. Also, vehicle thermal
deformation maycontribute to misalignment errors. To simulate the possible align-
ment error, the sensed side acceleration used by the flight control system was modi-
fied to include a componentof the normal acceleration in someof the simulation
runs.

DISCUSSIONOFRESULTS

In order to evaluate these off-nominal effects on the flying qualities of the
Space Shuttle Orbiter, a test maneuverwas devised to represent the maneuvering
required during the entry phase. As noted earlier, the Orbiter flies a preselected
angle-of-attack schedule and modulates the commandedvalue of _ to control both
downrange and cross range. The test maneuver was devised to maintain the initial

for a short period of time, to roll 60 ° at maximum roll rate, and then to roll

back 55 ° . The commanded angle of attack _c was generated by the guidance

algorithm. The test maneuver was initiated at Mach numbers of 10, 7.5, 5.0, and 4.2

along the entry profile, and the behavior of the Orbiter was examined. The length of

time for the initial _ hold was varied with Mach number to get the roll to 60 ° and

the reversal to occur at the most critical time. Unless otherwise noted, all cases

were flown with the automatic control system - that is, with no pilot inputs.

System Performance at Hypersonic Speeds

At hypersonic speeds, the body-flap effectiveness in pitch was such that apply-

ing both the pitching-moment uncertainty and the increment due to vehicle asymmetry

in the worst directions changed the body-flap deflection required for trim but not to

its limit. Thus, the elevator remained at its desired value, and there was no appar-

ent effect on the vehicle maneuver performance.

Figure 5 shows the vehicle response with the test maneuver initiated at Mach

numbers of 10 and 7.5 with nominal aerodynamics, no error in sensed _, two yaw RCS

thrusters on each side inoperable (off), and a lateral center-of-gravity offset of

0.0381 m (1.5 in.). The _ profile shows the Orbiter transitioning from its initial

value to lower values. The steps noted in the commanded angle-of-attack values occur

because the guidance algorithm is interrogated every 1.92 sec; thus, the flight con-

trol sees the guidance commands as a series of step commands. The data indicate that

th Orbiter performed the maneuver with no lateral oscillation and with very little

sideslip. The yaw thrusters receive the roll-angle error signal and are fired to

produce a body-axis yawing rate and small sideslip angle, thus allowing the effective

dihedral to generate a rolling moment. The aileron is used to provide the turn

coordination above Mach 1.5 according to the feedback control law

(Gain) sin _ DN + (Gain I) r' cot _ - p' + (Gain 2) cos _ P = 0
Y c

8



where Gain I was approximately 1.0 and Gain 2 was negative and much less than 1.0 for

Mach numbers greater than 3.0. Tne symbol DNy is a lagged side-force feedback with

a gain which is a function of p above Mach 4.2. (See appendix A. ) qhe sum of

the r' and p' terms in the equation is approximately equal to the stability-axis

yaw rate divided by sin _. When the difference between these two terms is zero, the

rate of change of the sideslip angle is zero and the turn is "coordinated." Tnere-

fore, the change in the DNy term will be small. This side-acceleration term is in

the control law to help control _ when the angle of attack is not known very accu-

rately and the term r' cot _ - p' is not correct for true turn coordination. Thus,

the overall effect of this control law is that _ and _ are minimized in the pres-

ence of substantial yawing rate. The yaw jets fire to establish and stop the maneu-

ver and to limit _esl!p_ " . _.... aileron deflections reauired_ to coordinate the maneu-

ver were approximately 0.05 ° and are difficult to see in figure 5. The apparent

steady-state aileron deflection is the deflection required to trim the 0.0381-m

(1.5-in.) lateral center-of-gravity offset.

Effect of sensed _ errors.- Figures 6 and 7 show the vehicle performance with

sensed angle-of-attack errors of -4 ° and 4 °, respectively. A sensed u error of -4 °

causes the vehicle to fly 4° higher than the guidance command, and then all the sig-

nals, which are a function of _ in the flight control system, are incorrect. Thus,

in figure 6 the roll rate was smaller than that for nominal _ and considerable yaw

thruster firing was required to sustain the maneuver. The aileron was deflected in

the positive direction from trim (compare figs. 5(a) and 6(a) at 40 sec), which

should have resulted in a larger value of p. However, the adverse yaw due to aile-

ron drove _ positive, and the positive dihedral effect actually reduced p. In

figure 7, where the vehicle performance with an _ error of 4 ° is presented, the

roll rate reached 5 ° per second, the vehicle tended to overshoot the _ value, and

considerable yaw thruster firing was required to keep the maneuver rate_ from

increasing even more. The aileron deflected in the negative direction from trim

(compare figs. 5(a) and 7(a) at 40 sec), which drove _ negative. This resulted in

large roll rates which proved to be difficult to control.

Effect of off-nominal aerodynamics.- Without any error in sensed _, the flight

control system has sufficient tolerance to handle adequately the entire off-nominal

aerodynamic matrix given in table II at Mach 10 and 7.5. Several examples of the

maneuver performance are presented in figures 8 and 9. There were minor differences

in the p, r', _, 6 , and yaw-jet time histories; but the maneuver performance was
a

e xce llent.

Effects of combined off-nominal aerodynamics and sensed _ errors.- With an

error of -4 ° at Mach 10, the off-nominal aerodynamics had little effect on the system

performance as indicated in figure 10. Since the vehicle was holding an angle of

attack that was 4 ° higher than the flight control system expected, the roll rate p

was lower than nominal. The higher RCS fuel-consumption cases for the entire test

matrix at Mach 10 are those shown in figure 10. The worst cases for an a error of

-4 ° at Mach 7.5 are shown in figure 11. Comparing figures 10 and 11 with fig-

ures 6(a) and (b), respectively, shows that off-nominal aerodynamics has very little

effect on maneuver performance at hypersonic speeds with a sensed _ of -4 °.

With a sensed _ error of +4 °, which caused the vehicle to fly 4 ° lower than

the control system expected, the effect of off-nominal aerodynamics was more signifi-

cant. The RCS fuel consumption increased by as much as 30 percent at Mach 10,

excursions greater than I ° were common, and roll-angle overshoots occurred fre-

quently. Some Mach 10 cases are presented in figure 12.



With C less negative (cases 5 through 8 and 13 through 16 as shownin
n6a

table II), less RCSfuel was consumed,but the maximum _ excursions were larger.
(Comparecases 3 and 7 in figs. 12(a) and (b), respectively.) Tne cases with posi-

tive increments in Cn_ and CI_, such as case 16 (see fig. 12(e)), resulted in
the largest maximumsideslip excursions; whereas the cases with a negative increment
in Cn and a positive increment in C1 , such as case 11 (see fig. 12(d)), consumed

the most RCS fuel. More aileron effectiveness /positive increment in C h usually

16a )
resulted in larger sideslip excursions and more RCS fuel consumed. Case 9 in fig-

ure 12(c) had the smallest maximum _ excursion but was one of the largest fuel-

consumption cases. _ne bare airframe characteristics were examined in the previous

study. The characteristics at Mach 10 for nominal aerodynamics and case 1 I with and

without the _ error of 4 ° were shown in table III of reference 4. This vehicle has

two convergent lateral-directional oscillatory modes which vary in period and time to

half-amplitude with aerodynamics and a. The conclusion in the previous study was

that off-nominal aerodynamics and _ errors did not significantly change the bare

airframe characteristics, and thus any degradation in vehicle performance was due

primarily to the control-system augmentation.

The maneuver performance at Mach 7.5 was very similar to the results at

Mach I0. Figure 13 shows the results for six cases. Although none of the cases

exhibited any control problems, the yaw-jet time histories showed that several cases

were near the yaw-jet control-authority limit when trying to reverse or maintain the

rolling rate. Cases 9 and 11 required one yaw jet all the time and two much of the

time to maintain the rolling rate on the second reversal between 30 and 40 sec, and

then two yaw jets were required for 6 to 7 sec to stop the rolling maneuver. Case 11

came very close to saturating the control system even though the maneuver itself

looked good.

Some additional uncertainties were combined with case 11 to see if control could

be maintained. Figure 14(a) shows the maneuver performance with a misalignment of 1 °

in the accelerometer assembly, which results in a component of the normal accelera-

tion N Z being sensed as a side acceleration. This puts a bias signal on the sensed

Ny used in the turn coordination in the flight control system. The roll rate for

the first reversal was larger than nominal (see fig. 14(a)), and an overshoot in roll

angle occurred. During thc second reversal, the roll rate was less than nominal, and

the maneuver was completed satisfactorily. The real-time simulation results indi-

cated that the system performance became worse at slightly higher Mach numbers than

for the maneuver shown in figure 14(a). Tne results for the same case with the

maneuver occurring just prior to 2 sec are shown in figure 14(b). The roll-angle

overshoot is slightly greater.

Figure 14(c) shows the effect of applying an uncertainty to C for the afore-

Y_
mentioned case. Since C is nominally negative, applying a positive increment

Y_
effectively decreased the side-acceleration feedback which resulted in slightly less

control and higher roll rates in the negative roll direction. As the figure

shows, the C increment resulted in a larger roll-angle overshoot and longer yaw-

Y_
jet firings.
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Figures 14(d) through (f) show the results of the samecase with an accelerom-

eter misalignment of -I ° and both with and without the uncertainty in Cy_ During

the roll reversal with positive p, shown in figure 14(d), two yaw jets were firing

to decrease r', but the aileron was deflected to increase r'. Thus, the roll rate

exceeded the nominal system design and was increasing until the roll-angle error

signal changed signs. The rolling inertia then caused a large and unacceptable over-

shoot. A negative increment in Cy_ effectively increased the Ny feedback and

from becoming much greater than 5. (See fig. 14(e).) A positive increment

allowed p to become very large with a very large and unacceptable over-

kept p

in C

shoot• (See fig. 14(f).) Thus, the system performance was unacceptable at hyper-

sonic speeds with two failed yaw jet, a sensed _ error of 4 ° , an accelerometer

misalignment of -I ° , and case 11 off-nominal aerodynamics with and without a positive

increment on Cy . The worst case (fig. 14(f)) was examined with all four jets

operational. The system performance was satisfactory as is shown in figure 14(g).

In summary, the vehicle performance was satisfactory with the test maneuver

initiated at Mach 10 or 7.5 for all cases with two yaw RCS thrusters on each side

inoperable (off), a lateral center-of-gravity offset of 0.0381 m (1.5 in.), and off-

nominal aerodynamics with and without a sensed _ error of _4 °. The system appeared

to be close to saturation in some cases for a sensed _ error of 4° . _dding a I°

misalignment of the accelerometer assembly and a positive increment on C did

result in a large and unacceptable roll-angle overshoot. Y_

System Performance at Supersonic Speeds

In the supersonic-speed range of interest in this study (Mach 5 to 2.5), the

aerodynamic characteristics changed significantly, which forced some flight-control-

system reconfiguration as well as gain scheduling. The gain on the Ny feedback

that is a function of p is terminated at Mach 4.2. The rudder is activated at

Mach 4.5. As the Mach number decreased, the elevon had to deflect more negatively to

trim the vehicle as the pitching-moment characteristics changed. As the elevon

deflected more negatively, C tended to become more positive; and as Mach number
n6a

decreased, Cn6 a tended to be more positive. Since a negative Cn6 a was used to

provide lateral trim at the higher Mach numbers, a transition in the trim network

took place. Also, the rudder began to be effective in the lower Mach number range.

Since the rudder deflection and rate were limited when the speed brake was fully

open, the speed brake had to be partially closed.

The analysis of this flight regime was accomplished with simulation initializa-

tion at Mach 5 and 4.2. Once again, the roll-reverse-roll maneuver was used to

stress the system at several different times while the control system followed the

guidance-commanded angle-of-attack schedule.

Effect of sensed _ errors at Mach 5.- The Mach 5 maneuver performance with the

maneuver occurring after 10 and 25 sec is shown in figure 15. The vehicle performed

the maneuver very satisfactorily with both nominal _ and sensed _ errors. In

some cases when the rudder was activated (Mach 4.5), a rudder-deflection spike, a
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spike, and a p spike occurred at the initiation of the roll reversal; and an oscil-
lation in p, 6r, and 6 followed the maneuver. For the longer runs (figs. 15(d),
(e) and (f)), the transition from aileron trim to rudder trim is evident as 6
faded to 0 and 6 went to a negative value, ar

Effect of off-nominal aerodynamics at Mach 5.- All off-nominal aerodynamics

cases listed in table II were run with nominal rudder effectiveness, but only the two

worst cases (cases 3 and 7) are presented in figure 16. With the maneuver beginning

just after 10 sec, it was completed satisfactorily for cases 3 and 7; but an oscilla-

tion in p, 6, 6a, and 6 r followed the maneuver. With the maneuver beginning

just after 25 sec, the initiation of the roll reversal was accompanied by large p,

6, and 6 spikes; and for case 3, the system diverged. Cases 3 and 7 have the same
• r

bare-alrframe characteristics which were given for case 7 in table V of reference 4

for this speed range. Tne bare airframe has four convergent aperiodic modes for

these flight conditions. %_nus, the control system itself must be the source of the

oscillatory instability. The problem was believed to be caused by a forward-loop-

gain mismatch between the rudder and the aileron. At the simulated Mach number and

angle of attack for the cases, the rudder produces almost as much adverse rolling

moment as yawing moment. Thus, to obtain the desired p, relatively large aileron

and rudder deflections as well as yaw-jet pulses were required. The sideslip angle

6 became large, and the roll rate became excessive. The controllers were able to

arrest the high rolling rate initially; but as the Ny feedback was removed, 6
became excessive and the vehicle oscillation became severe.

The scheduled rudder forward-loop gain (GDRC) was reduced from 1000 to 750 above

Mach 1.2. (See appendix A.) Tne Mach 5 maneuver performance for several cases, with

the maneuver initiated at about 25 and 40 sec, is presented in figure 17. Both the

nominal case and case 7 improved slightly with the reduced rudder gain. Case 3

improved significantly, but the maneuver was still unacceptable. There was a further

slight improvement by reducing GDRC to 700. Also, 20- and 40-percent increases in

the scheduled aileron forward-loop gain (KGDA), when coupled with GDRC = 750,

produced a slight improvement over the case with nominal KGDA. Since other Shuttle

program simulation studies and analyses have shown that GDRC = 750 was desirable,

even though some stability margin for the nominal system may be lost, a GDRC value of

750 was used for the remainder of this analysis.

For cases 6 and 7 where C was more positive than nominal, the 6 deflec-
n6a a

tion for lateral trim reached approximately 3° . The maximum trim deflection allowed

by the control system is 5 ° .

Off-nominal rudder characteristics (table II) were added to the other off-

nominal aerodynamic characteristics. The results for several cases with increased

rudder effectiveness, which aggravated the rudder instability, are presented in
figure 18.

The Mach 5 maneuver-performance results for decreased rudder effectiveness are

shown in figure 19. In all cases, the maneuver was completed satisfactorily without

severe oscillations. However, in all cases the rudder was driven to the trim limit

of 9 ° and the yaw jets were required to maintain trim. Case 7, the worst case,

required one yaw jet full time and a second yaw jet most of the time to maintain

trim. Other runs were made with case 7 to see if maneuvering while using most of the

yaw-jet control authority for trim would cause the system to fail. The maneuver in
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someruns was worse than that shownin figure 19(d), but control was adequate to
complete the maneuverand maintain trim.

Effects of combined off-nominal aerodynamics and sensed _ errors.- Some Mach 5

m_neuver-performance results for a sensed _ error of 4 ° and off-nominal aerody-

namics (nominal rudder) are shown in figure 20. In several cases, the rudder insta-

bility continued to be a problem, although control was always maintained. For the

cases where C was more positive than nominal, such as cases 5 and 14, 6 a was
n6a

driven toward the trim limit of -5 ° as 6 became more negative• For cases 5

and 14, considerable yaw-jet firing took _lace before the maneuver began to maintain

trim,_ and large values of _e (about I..5° for case 14) were required for trim. To

perform the first roll reversal, the jets fired in the opposite direction to that

required for trim; and thus as _ became more positive, the balance of roll due to

and roll due to aileron was upset• Tnen, a large negative roll rate occurred

which the system had difficulty stopping, particularly for case 14 where the aileron

was more effective in roll. Less control authority was available to roll back, since

the jets were already required to help hold trim, and the rudder produced a negative

rolling moment as it was deflected to augment the yaw jets. This problem was further

aggravated by applying the off-nominal aerodynamic increment to the pitching moment

in the direction that would move the elevon more negatively and by reducing the side-

acceleration feedback by applying a positive increment to C

Y_

During simulation tests, an astronaut pilot used the roll-panel trim switch to

help provide more symmetric p, but combinations were found where the pilot was

unable to handle the vehicle in this flight regime.

One solution to this problem is to modify the body-flap schedule and keep the

speed brake open longer, which tends to keep the elevon down. This will insure that

Cn6 a stays negative farther into the entry until the rudder has sufficient effec-

tiveness to handle the trim requirements.

The results of four cases with decreased rudder effectiveness and a sensed

error of 4° are presented in figure 21. The less effective rudder decreased the

oscillatory tendency exhibited in figure 20. However, cases 6 and 14 exhibited loss

of control when the rudder ineffectiveness was added to the aileron trim problem

discussed previously• The pilot's use of the roll-panel trim switch helped to avoid

loss of control, but combinations were again found that he was unable to handle•

This further demonstrated the requirement to schedule the speed brake and body flap

for effective aileron trim until the rudder effectiveness is assured•

Increased rudder effectiveness and a sensed _ error of 4 ° caused the response

to be more oscillatory than that for the nominal rudder• This can be seen by compar-

ing figures 20 and 22.

With a sensed _ error of -4 ° and nominal rudder, the system was oscillatory

after the rudder was activated, and the roll rate exhibited some asymmetry. Four

representative off-nominal aerodynamic cases for these conditions are shown in

figure 23.

The nominal aerodynamics and the two worst cases for increased rudder effective-

ness (cases 3 and 7) are presented in figure 24. The response performance shows that

the system was more oscillatory with increased rudder effectiveness• With decreased
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rudder effectiveness, even with nominal aerodynamics, the control system required two
yaw thrusters to hold trim as the rudder went to the trim limit (fig. 25). Case 3
appears to have divergent oscillation toward the end of the run, and cases 7 and 15
did diverge as the yaw thruster and the rudder were unable to maintain control.
Again, the system must be modified to makesure that C has the proper sign until
the rudder is effective, n6a

Effect of sensed _ errors at Mach 4.2.- The roll-reverse-roll maneuver was

performed satisfactorily at 25 sec after initiation at Mach 4.2 for nominal and off-

nominal angles of attack as shown in figure 26. The oscillatory tendency of the

system was evident in each of the cases shown. Also, the improper turn coordination

is evident because the angle-of-attack error decreased or increased p, as was shown

at the higher Mach numbers.

Effect of off-nominal aerodynamics at Mach 4.2.- All cases listed in table II

were run with nominal, decreased, and increased rudder effectiveness with the maneu-

ver beginning 25 sec after initiation at Mach 4.2. With nominal rudder effective-

ness, the maneuver was completed satisfactorily in all cases. However, cases 3

and 7, presented in figure 27, exhibited the system instability seen previously. The

oscillatory tendency was present before and after the maneuver; and large p, _,

6 , and 6 spikes occurred at the initiation of the second reversal.
a r

With decreased rudder effectiveness, the maneuver was satisfactorily completed

in all cases even though during the maneuver the rudder reached its trim limit of 9 °

even with nominal aerodynamics, as shown in figure 28(a). In case 3, the combined

trim deflection plus the deflection required to execute the roll reversal resulted in

a rudder deflection greater than 20 ° (fig. 28(b)). The yaw thrusters were on at the

same time, and thus the yaw control was nearly saturated. In case 6, shown in fig-

ure 28(c), the aileron was on the trim limit of 5° at the initiation of the run; but

the system recovered, completed the maneuver, and maintained control throughout the

run. Toward the end of each run presented, the rudder effectiveness increased as

Mach number and angle of attack decreased, and the system control margin increased.

The nominal and the two worst cases with increased rudder effectiveness are

presented in figure 29. The oscillatory tendency and the p, _, 6 , and 6
r

spikes at the beginning of the second reversal are similar to those _f the prevlous

cases. Again, the system appears to be marginally stable.

Effects of combined off-nominal aerodynamics and sensed _ errors.- The

response performance is shown in figure 30, with a sensed _ error of -4 ° (the

vehicle flies 4° higher than the system expects) and nominal rudder effectiveness.

The three worst cases (cases 3, 5, and 7), which are shown in figure 30, all exhibit

the asymmetric roll-rate characteristic that has been shown in previous results.

Also, the rudder-deflection spike and the high roll rate at the beginning of the

second roll reversal followed by the oscillation are typical of the high-rudder-gain

problem discussed previously.

With decreased rudder effectiveness and a sensed _ error of -4 ° , the rudder

went to the trim limit, and two yaw thrusters were required to maintain the roll

rate, at least part of the time, for the nominal-aerodynamics case shown in fig-

ure 31(a). Cases 3, 7, 11, and 15 all resulted in an unacceptable performance

because the combination of two yaw thrusters that failed and very low rudder effec-

tiveness were too much for the system. The two worst cases (cases 3 and 7) are pre-

sented in figures 31(b) and (c), respectively. Control was completely lost for

case 7 as the vehicle rolled over. Revising the body-flap and speed-brake schedules
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to provide more positive elevon deflection, and thus negative C , and using the

n6a

aileron for lateral trim to lower Mach numbers are probably the only ways to circum-

vent this problem.

Increased rudder effectiveness with a sensed _ error of -4 ° produced the

oscillatory tendency that occurred previously. Tne response results for nominal

aerodynamics and two off-nominal aerodynamics cases are presented in figure 3 2.

Case 7 was the worst with an excessive roll rate and large _ with an oscillation

preceding and following the maneuver.

The response results for two cases with a sensed _ error of 4 ° and nominal

rudder effectiveness are presented in figure 33. Case 3 exhibits the oscillatory

tendency previously discussed and has the large roll-rate spikes at the initiation of

the roll reversals. Case 5 has the additional problem that the aileron was on the

trim limit and two jets were firing initially. As the rudder took over this trim

function and the maneuver was made, the oscillaton amplitude was reduced. _he aile-

ron was on the trim limit for case 7, and the ensuing oscillation diverged. As has

been mentioned previously, revision of the elevon-trim and speed-brake schedules to

drive the elevon down (more positive) to provide more negative C is required to

help alleviate the trim problem, n6a

The response results with increased rudder effectiveness are presented in fig-

ure 34. The case with nominal aerodynamics performed satisfactorily, but the oscil-

latory tendency was evident. All the off-nominal aerodynamics cases with decreased

aileron effectiveness (cases I through 8) exhibited marginal maneuver performance and

the oscillatory tendency, although none lost control. Time histories of the two

worst cases (cases 3 and 5) are presented in figure 34.

The response results for a few cases with decreased rudder effectiveness are

presented in figure 35. _he maneuver performance for nominal aerodynamics was very

satisfactory even though the rudder did momentarily go to the trim limit. The maneu-

ver was marginal for case 3 aerodynamics as the rudder deflection reached 1 9 ° .

Again, the vehicle was untrimmed initially for case 5 aerodynamics. However, the

oscillation converged, and the maneuver was accomplished even though the rudder drove
to the trim limit.

In summary, at supersonic speeds (Mach 5 to 2.5) two basic design problems exist

in the flight control system. With increased rudder effectiveness, the system tends

to be oscillatory after the rudder is activated. The system diverged until the rud-

der forward-loop gain was reduced by 25 percent. With decreased rudder effective-

ness, control was lost in several cases because of the inability to hold lateral

trim. The rudder is too weak at Mach 4 to take over trim, and the aileron may be

unable to trim because of the sign change in C • Thus, the body-flap and speed-

n6a

brake schedules must be modified to get a more positive elevon deflection and, there-

fore, a more negative C at lower Mach numbers.

n6a

CONCLUDING REMARKS

A six-degree-of-freedom simulation analysis has been performed for the Space

Shuttle Orbiter during entry from Mach 10 to 2.5 with realistic off-nominal condi

tions using the flight control system referred to as the blended entry digital

autopilot specified in May 1978. This flight control system has evolved from
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previous studies of a similar approach. Tne off-nominal conditions included the
following: (I) aerodynamic uncertainties in extrapolating from wind-tunnel-derived
characteristics to full-scale flight characteristics, (2) an error in deriving the
angle of attack from onboard instrumentation, (3) the failure of two of the four
reaction control-system thrusters on each side (design specification), and (4) a
lateral center-of-gravity offset and vehicle asymmetries. _e effect of misalignment
of the side accelerometer was also examined for a few cases.

With combinations of the aforementioned four off-nominal conditions, the control
system performed satisfactorily with a few exceptions. Tne cases that did not
exhibit satisfactory performance displayed the following main weaknesses. Marginal
performance wasexhibited at hypersonic speeds for a few cases with a sensed angle-
of-attack error of 4°. (Tne vehicle flew 4° lower in angle of attack than the flight
control system expected because of error.) At supersonic speeds the system tended to
be oscillatory in roll rate, sideslip, and control deflections, particularly with
increased rudder effectiveness. Tne system diverged for several cases because of the
inability to hold lateral trim with the lateral center-of-gravity offset and vehicle
asymmetries. Several system modifications were suggested to help solve these prob-
lems and to maximize safety on the first flight: alter the elevon-trim and speed-
brake schedules to keep the elevon more positive at the higher supersonic speeds,
delay switching to rudder trim until the rudder effectiveness is adequate and reduce
the overall rudder loop gain. Tnese and other modifications were incorporated in a
flight-control-system redesign in May 1979.

Langley ResearchCenter
National Aeronautics and Space Administration
Hampton,VA 23665
February 21, 1984
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APPENDIXA

ROLL AND YAW CHANNELS OF FLIGHT CONTROL SYSTEM

The flight control system described in reference 6 was revised to solve the

problems discussed in reference 4. The revised roll and yaw channels are described

in this appendix.

Symbols

This flight control system was designed for measurements in the U.S. Customary

Units. _herefore, units are given in both the SI and U.S. Customary Units.

AL approach and landing guidance

ALPDG angle of attack, deg

AUTO autopilot control mode

BANKERR control-system roll-angle error, deg

BETAF

BETDG

COSALP

COSTHE

COTALP

DACM

DAM

DAMAX

DAMS

DAMSF

DAMS FGN

DAMTR

DAMTRS

DAT

D ATR

DATRI

control-system angle of sideslip, deg

angle of sideslip, deg

cosine of angle of attack

cosine of pitch angle

cotangent of angle of attack

roll-rate error, deg/sec

roll-rotation hand-controller command, deg

roll-stick-command limit, deg

shaped roll-stick command, deg

filtered roll-stick command, deg

gain to convert roll-stick command to rate command, (deg/sec)/deg

roll-panel-trim command

roll-panel-trim rate, deg/sec

aileron-trim rate, deg/sec

aileron-trim rate due to crossfeed and forward loop, deg/sec

aileron-trim rate due to crossfeed, deg/sec

17



DATRIM

DAY

DAYF

DELAC

DNY

DR

DRC

DRCC

DRF

DRFS

DRFSI

DRJET

DRM

DRMS

DRMTR

DRRC

EARLY

ENTRY

ERRBANK

FADER

FLATURN

GALR

GDA

GDAY

GDRC

GGDRC

GLIN
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aileron-trim command,deg

side-acceleration error, g units

filtered side-acceleration error

aileron-deflection command,deg

stability-axis yaw rate due to side acceleration, deg/sec

preliminary rudder-deflection command,deg

rudder-deflection command,deg

limited yaw-rate error for crossfeed, deg/sec

filtered rudder-deflection command,deg

rudder-trim rate, deg/sec

rudder-trim deflection, deg

yaw-jet-rate command,deg/sec

rudder-pedal command,deg

shaped-rudder-pedal command,deg

yaw-panel trim

yaw-rate error, deg/sec

flight-control-system subphase

entry guidance

roll-angle error, deg

signal fading logic

flat-turn regime

scheduled gain to blend between yaw-jet/aileron control and aileron/rudder
control

gain to convert roll-rate error into aileron command,deg/(deg/sec)

gain to schedule side-acceleration feedback to aileron and roll jets

scheduled gain used to obtain GGDRC,deg/(deg/sec)/Pa
(deg/(deg/sec)/(ib/ft 2) )

gain to convert yaw-rate error to rudder-deflection command,deg/(deg/sec)

linear coefficient in roll-stick shaping, deg/deg



GNY

GPC

GPFBAY

GPPHI

GRH

GTRR

g

H1

KGDA

MACH

MANRY

NY

PAR

PC

PCC

PCCO

PCLIM

PDAC

PDACF

PDG

PE

PEP

PGAIN

PHICM

PHICMS

PHIDG

PP

APPENDIX A

gain to convert rudder-pedal command to side-acceleration command,

(g units)/deg

gain used to schedule roll-rate command to aileron

gain used to schedule high gain on side-acceleration feedback,

(g units)/(deg/sec)

gain to convert roll-angle error to roll-rate command, (deg/sec)/deg

gain used to scale yaw-rate error

gain used to scale rudder-trim integrator

acceleration due to gravity, where Ig = 9.8 m/sec 2 (32.152 ft/sec 2)

flight-control fast-cycle time, sec

scheduled gain used to obtain GDA, deg/(deg/sec)/Pa (deg/(deg/sec)/(ib/ft2))

Mach number

pilot-commanded roll/yaw mode

side-acceleration feedback, g units

coefficient of squared term in roll-stick shaping, deg/deg 2

commanded roll rate, deg/sec

preliminary yaw-rate error, deg/sec

filtered preliminary yaw-rate error, deg/sec

roll-rate-command limit, deg/sec

scaled aileron command, deg

filtered aileron command, deg

sensed roll rate, deg/sec

turn-coordination roll-rate error, deg/sec

aileron rate-trim signal for low dynamic pressure, deg/sec

aileron-trim signal for low Mach number, deg

guidance-system roll-angle command, deg

smoothed roll-angle-guidance command, deg

sensed roll angle, deg

= PDG + (RTDG) (TANP) (SINTHE)/V, deg/sec
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PTEM

QB

RCS

RDG

RFDS

RP

RTDG

SINALP

SINPHI

SINTHE

SMOOTHER

TAEM

TANP

TEMA

TEMB

UXC

UZC

V

YALCM

YPT

YPTI

z

APPENDIX A

side-acceleration feedback gain, deg/sec

dynamic pressure, Pa (Ib/ft 2)

reaction control system

sensed yaw rate, deg/sec

Reentry Flight Dynamics Simulator

= RDG - (RTDG)(SINPHI)(COSTHE)/V, deg/sec

= 57.3(g), deg-m/sec 2 (deg-ft/sec 2)

sine of angle of attack

sine of roll angle

sine of pitch angle

guidance-command smoothing logic

terminal-area-energy-management guidance

tangent of roll angle

lateral-acceleration command due to rudder-pedal input, g units

body-axis roll-rate command, deg/sec

number of roll RCS thrusters commanded to fire

number of yaw RCS thrusters commanded to fire

airspeed, m/sec (ft/sec)

guidance yaw-rate command, deg/sec

filtered acceleration due to yaw-panel trim, g units

acceleration due to yaw-panel trim, g units

z-transform variable

Description of System

The block diagrams of the roll and yaw channels are presented in figures AI and

A2, respectively. The system was designed to minimize the time required to complete

the flight-control calculations in the onboard digital computers. This was accom-

plished by operating various elements of the control laws at the minimum acceptable

frequency; thus, a variation in computational frequency existed among the various

signal paths of the flight control system. The frequency is indicated on the block

diagrams either in the figure legend or by the dashed boxes around the control-system

signal paths.
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Computational frequency differences between the guidance system and flight con-

trol system resulted in a requirement to smooth the signals at the interface. _his

was accomplished by the SMOOTHER logic which is shown as a block in figure A1(a).

Lateral-trim logic switching required a signal-fading logic indicated by the block

FADER in figure AI (c). Tne SMOOTHER and FADER logics are described in detail in

appendix B of reference 6.

Roll channel.- The aileron command and roll RCS command control laws are pre-

sented in figure AI. Figure AI (a) shows how either the roll-stick command (DAM) or

the smoothed roll-angle-guidance command (PHICMS), depending on pilot selection

(MANRY) in the cockpit, is converted to roll-rate command (PC). _nis command signal

was directed to the yaw channel (fig. A2(b)) and to the aileron and roll RCS jet

commands, as is shown in figure AI (b).

The Orbiter enters the Earth's atmosphere at approximately 40 ° angle of attack,

holds this _ until it decelerates to a Mach n_ber of around 1 3, and then begins a

slow transition in 5, reaching 13 ° angle of attack near Mach 2.5. At the higher

angles of attack, the stability-axis roll rate was obtained by using the yaw thruster

to produce a body-axis yawing rate and letting the relatively large effective dihe-

dral generate the body-axis rolling rate. Tne aileron was used only as a coordi-

nating controller in maneuvering.

The gain GPC (fig. AI (b)) was very small at the higher Mach numbers because of

the scheduled gain GALR, and thus only a small percentage of the roll rate commanded

was directed to the roll thrusters and ailerons. At the lower Mach numbers, GPC was

I .0 and the commanded roll rate was directed entirely to the ailerons. Thus, the

scheduled gain GALR was the mechanism by which the flight control system was blended

from one type of system to another. Note, the roll _ets (UXC = Jet command) were

disengaged at a dynamic pressure of 479 Pa (10 Ib/ft_).

Crossfeed between the yaw channel and the roll channel DRRC was used to generate

the aileron trim signal above Mach 4. (See fig. At(c).) Below Mach 4, lateral trim

was handled by the rudder-forward-loop integration. _he 40-sec FADER was triggered

at this Mach 4 switch to minimize the transient.

Yaw channel.- The rudder and yaw RCS command diagrams are presented in fig-

ure A2. Below Mach 4.5, the rudder was active and commands could be input through

the rudder pedals DRM (fig. A2(a)). The system was designed, however, for the yaw

channel to operate without requiring manual inputs through the rudder pedals. At the

higher angles of attack, the stability-axis roll rate PC was used to generate a yaw-

rate error (DRRC) (fig. A2(b)). At the lower angles of attack, the yaw-rate feedback

RP is the predominant feedback signal and is sufficient to provide the desired turn

coordination.
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APPENDIX B

AEROELASTIC MODEL

A static aeroelastic model developed for the Lyndon B. Johnson Space Center was

used in the Reentry Flight Dynamics Simulator (RFDS). The model uses a series of

curve fits to the aeroelastic data to generate factors or increments to be applied to

the rigid-body aerodynamic coefficients. The curve fits were developed with dynamic

pressure in U.S. Customary Units, and thus the coefficients in the equations are for

U.S. Customary Units. To convert to S.I. Units, the coefficients must be multiplied

by 47.880258. The purpose of this appendix is to present the formulation of this

model.

AEI

AE2

AE3

AE6

AE7

AE8

AE41

AE42

AE51

AE52

C
h
e,i

C
h
e,o

C

h_

C

h 6r

C L

C L
e

C
1

C

16a

28

Symbols

conversion factor for rudder derivatives

conversion factor for _ derivatives

conversion factor for pitch and lift elevon effectiveness and aileron

effectiveness in roll

conversion increment for lift

conversion increment for pitch

conversion factor for yaw due to aileron deflection

conversion factor for inner-elevon-panel hinge moment

conversion factor for outer-elevon-panel hinge moment

conversion factor for rudder hinge moment

conversion factor for rudder/speed-brake hinge moment due to sideslip

rigid-body inner-elevon-panel hinge-moment coefficient

rigid-body outer-elevon-panel hinge-moment coefficient

rigid-body rudder/speed-brake hinge-moment coefficient due to

sideslip, deg -1

rigid-body rudder hinge-moment coefficient, deg -I

rigid-body lift coefficient

rigid-body lift increment due to elevon deflection

rigid-body rolling-moment coefficient due to sideslip angle, deg -I

rigid-body rolling-moment coefficient due to aileron deflection, deg -I
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C

16r

C m

rigid-body rolling-moment coefficient due to rudder deflection, deg -I

rigid-body pitching-moment coefficient

Cm e

C
n

C

n6a

C

n6r

cy_

CY6r

M

rlgid-body pitching-moment increment due to elevon deflection

rlgid-body yawing-moment coefficient due to sideslip angle, deg -I

rlgid-body yawing-moment coefficient due to aileron deflection, deg -I

rlgid-body yawing-moment coefficient due to rudder deflection, deg -I

rlgid-body side-force coefficient due to sideslip angle, deg -I

rlgid-body side-force coefficient due to rudder deflection, deg -I

Mach number

QB dynamic pressure, Ib/ft 2

RFDS Reentry Flight Dynamics Simulator

angle of attack, deg

sideslip angle, deg

The notation ( )flex signifies that the rigid-body coefficient in the paren-

theses has been converted to a flexible-body coefficient, and the notation ( )vert
signifies the rigid-body contribution of the vertical tail.

Conversion of Rigid-Body Coefficients to Flexible-Body Coefficients

The following equations were used to convert the rigid-body aerodynamic coef-

ficients to the approximate flexible-body aerodynamic coefficients. The AE factors

in each equation are the conversion factors which will be defined subsequently.

C r> = AEI CY6 flex Y6r

C ) = AEI C%6r flex %6r

Cn6r>flex = AEI Cn6 r

-- - 1 - Cy
(Cy _)fle x Cy_ ( AE2)( _> vert

29
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The conversion factors are listed as follows according to Mach number:

For Mach numbers above 5:

AEI = 1 - 0.0005 QB

AE2 = 1 - 0.0002 QB

AE3 = 0,995 - 0.0002 QB

AE8 = 0.995 - 0.000175 QB

AE6 = AE7 = 0

AE41 = AE42 = I - 0.0002 QB

AE51 = I - 0.00015 QB

AE52 = I - 0.00025 QB

From Mach 5 to 3:

AEI = 0.98 - 0.0006 QB + (M - 3)(0.015 + 0.0005 QB)

AE2 = 0.995 - 0.0003 QB + (M - 3)(0.0025 + 0.00005 QB)

AE3 = 0.995 - 0,00035 QB + (M - 3) (0.000075 QB)

AE8 = 0.995 - 0.0003 QB + (M - 3) (0.0000633 QB)

AE41 = AFA2 = 1 - 0.0003 QB + (M - 3)(0o00005 QB)

AE51 = 0.995 - 0.0002 QB + (M - 3)(0.0025 + 0,000025 QB)

AE52 = I - 0.0004 QB + (M - 3)(0.000075 QB)

31



From Mach 3 to 2:

APPENDIX B

AEI = 0.98 - 0.001 QB + (M - 2) (0.03 + 0.0003 QB)

AE2 = 0.985 - 0.0005 QB + (M - 2)(0.01 + 0.0002 QB)

AE3 = 0.99 - 0.0005 QB + (M - 2)(0.005 + 0.00015 QB)

AE8 = 0.99 - 0.00042 QB + (M - 2)(0.005 + 0.000127 QB)

AE51 = 0.995 - 0.0004 QB + (M - 2) (0.0002 QB)

AE52 = 0.99 - 0.0007 QB + (M - 2)(0.01 + 0.0003 QB)

From Mach 5 to 1.5:

AE6 = 0.00125 + 6 x 10 -6 QB + (M - 1.5)(-3.57143 x 10 -4 - 1.71429 × 10 -6 QB)

AE7 = -0.001 - 8 x 10 -6 QB + (M - 1.5)(2.85714 x 10 -4 + 2.285714 x 10 -6 QB)

From Mach 3 to 1.5:

AE41 = 0.985 - 0.00055 QB + (M - 1.5)(0.01 + 0.000167 QB)

AE42 = 0.99 - 0.00045 QB + (M - 1.5)(0.006667 + 0.000133 QB)

From Mach 2 to 1.5:

AE2 = 0.975 - 0.0005 QB + 0.02(M - 1.5)

AE6 = 0.00125 + 6 x 10 -6 QB + (M - 1.5)(-3.57143 x 10 -4 - 1.71429 x 10 -6 QB)

AE7 = -0.001 - 8 x 10 -6 QB + (M - 1.5)(2.85714 x 10 -4 + 2.285714 x 10 -6 QB)

AE41 = 0.985 - 0.00055 QB + (M - 1.5)(0.01 + 0.000167 QB)
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AE51= 0.99 - 0.0006 QB+ (M - 1.5)(0.01 + 0.0004 QB)

AE52= 0.965 - 0.0008 QB + (M - 1.5)(0.05 + 0°0002 QB)

From Mach 2 to 1.2:

AEI = 0.9 - 0°00127075 QB + (M - 1.2)(0.0875 + 0°000375 QB)

AE3 = 0.96 - 0°00085 QB + (M - 1.2)(0.0375 + 0,000348 QB)

AE8 = 0°97 - 0,0007 QB + (M - 1.2)(0.025 + 0.00036 QB)

From Mach 1.5 to 1.2:

AE6 = 0.003 + 0.000052 QB + (M - 1.2)(-5.8333 x 10 -3 - 1.5333 x 10 -4 QB)

AE7 = -0°003 - 4 x 10 -5 QB + (M - 1.2)(0.0066666 + 1.06666 x 10 -4 QB)

AE41 = 0.98 - 0°00085 QB + (M - 1.2)(0.016667 + 0.001 QB)

AE42 = 0.98 - 0.0006 QB + (M - 1.2)(0.033333 + 0.0005 QB)

AE51 = 0.96 - 0°0007 QB + (M - 1.2)(0,I + 0.000333 QB)

AE52 = 0.985 - 0°0007 QB - (M - 1.2)(0.066667 + 0.000333 QB)

From Mach 1.5 to 0.95:

AE2 = 0.995 - 0,0003 QB - (M - 0,95)(0.036364 + 0.00036364 QB)

From Mach 1.2 to 0.95:

AEI = 1.0 - 0.00087075 QB - (M - 0.95) (0.4 + 0,0016 QB)

AE3 = 0.985 - 0.0005 QB - (M - 0.95)(0.I + 0o0014 QB)

AE41 = 1.0 - 0°0005 QB - (M - 0.95)(0.08 + 0,0014 QB)
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AE42= 1.0 - 0.0005 QB- (M - 0.95)(0.08 + 0.0004 QB)

AE51= 0.97 - 0.0003 QB- (M - 0.95) (0.04 + 0.0016 QB)

AE52= 1.0 - 0.0003 QB- (M - 0.95) (0.06 + 0.0016 QB)

From Mach 1.2 to 0.9:

AE6 = 0.005 + 0.000184 QB + (M - 0.9)(-6.666666 x 10 -3 - 4.4 x 10 -4 QB)

AE7 = -2.7 x 10 -3 - 9.68 x 10 -5 QB + (M - 0.9)(-0.001 + 1.8933333 x 10 -4 QB)

AE8 = 0.995 - 0.00038 QB - (M - 0.9)(0.025 + 0.0014 QB)

From Mach 0.95 to 0:

AE1 = 1.0 - 0.0006 QB - 0.5M2(0.0006 QB)

AE2 = 0.995 - 0.0003 QB

AE3 = 0.99 - 0.0002 QB - M(0.00526316 + 0.00031579 QB)

AE41 = AE42 = 0.995 - 0.0002 QB - M(0.0003 QB)

AE51 = 0.99 - 0.0003 QB - 0.021053M

AE52 = 1.0 - 0.0004 QB + M(0.000105 QB)

From Mach 0.9 to 0.6:

AE6 = 0.00125 + 0.000098 QB + (M - 0.6)(0.0125 + 2.8666667 x 10 -4 QB)

AE7 = -0.001 - 4.4 x 10 -5 QB + (M - 0.6)(-1.16666 x 10 -3 - 2.12 x 10 -4 QB)

AE8 = 0.995 - 0.0002 QB - (M - 0.6)(0.06 + 0.0004 QB)
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From Mach 0.6 to 0:

AE6 = 0.0015 + 0.000076 QB + (M - 0.25)(0.6285714 x 10 -4 QB)

AE7 = -0.001 - 3.2 x I0 -5 QB + (M - 0,25)(9.28571 x 10 -3

- Io085714 x 10 -4 QB)

AE8 = 0.995 - 0.00007 QB - M(0o0002 QB)
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TABLEBI. VERTICAL-TAILCOMPONENTOF Y vert

Values of Cy8 at Machnumbersof -, vert
deg 0.25 0.60 0.90 0.95 1.05 1.2 1.55 2.0 3.0 5.0

-5 -0.0062
0 -.0060
5 -.0058

10 -.0056
15 -.0056
20 -.00581
25 -.00581
30 -.0058
35 -.OO58

-0.0074
-.0074
-.0070
-.0064
-.0062
-.0062
- .0062
-.0062
-.0062

-0.0089
-.0089
-.0084
-.0072
-.0054
-.0030
-.0030
-.0030
-.0030

-0.0088
-.0088
-.0082
-.0071
-.0053
-.0028
-.0028
-.0028
-.0028

-O.OO85
-.0084
-.0080
-.0069
-.00501

.00221
-.0022
-.0022
-.0022

-0.0082
-.0081
-.0076
-.0064
-.0042
-.0008
-.0008
-.0008
-.0008

-0.0079
-.0077
-.0072
-.0057i
-.0030
-.0024

.0024

.0024

.0024

-0.0075 -0.0062
-.0074 -.0060
-.0069 -.0055
-.0056 -.0044
-.0028 -.0026
-.0026 -.0002!

•0027 .0005
•0012 .0000
.0012 -.0002

-0.0042
-.0040
-.0036
-.0032
-.0026
-.0019
-.0008
-.0004
-.0004

TABLEBII.- VERTICAL-TAILCOMPONENTOF <Cn_Ivert

Values of Cn_ at Machnumbersof -_, ,vert
deg

0.25 0.60 0.90 0.95 1.05 1.2 1.55 2.0 3.0 5.0

-5 0.00315
0 .00310
5 .00287

10 .00260
15 .00256
20 .00260
25 .00260
30 .00260
35 .00260

0.00324
.00320
.00308
.00290
.00281
.00280
.00280
.00280
.00280

0.00388
.00379
.00355
.00318
.00257
.00150
.OO15O
.00150
.00150

0.00385
.00378
.00359
.00325
.00268
.00153
.00153
.00153
.00153

0.00372
.00370
.00359
.00330
.00273
.00160
.00160
.00160
.00160

0.00372
.00367
.00345
.00300
.00225
.00100
.00100
.OO100
.00100

0.00367
.00360!
.00325
.00260
.00152

-.00026
-.00026
-.00026
-.00026

0.00355
.00350
.00315
.00250
.00130

-.00090
-.00097
-.00070
-.00070

0.00285
.00280
.00255
.00210
.00140
.00030
.00005
.00002
.00028

0.00190
.00190
.00180
.00159
.00122
.00070
.00045
.00039
.00034
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TABLE I.- PHYSICAL CHARACTERISTICS OF SPACE SHUTTLE

ORBITER DURING ENTRY

Mass properties:

Mass, kg ........................................................... 83 388
Moments of ine;tia_

I x , kg-m 2 ............................................................. I 169 236

Iy, kg-m 2 ............................................................. 8 729 397

IZ, kg-m 2 ............................................................. 8 991 771

Ixy , kg-m 2 ................................................................ 3 868

IXZ, kg-m 2 ............................................................. -218 615

Iyz , kg-m 2 ................................................................ 3 441

Wing:

Reference area, m 2 ......................................................... 249.91

Mean aerodynamic chord, m ................................................... 12.06

Span, m ..................................................................... 23.79

Elevon:

Reference area, m 2 .......................................................... 19.51

Mean aerodynamic chord, m .................................................... 2.30

Rudder:

Reference area, m 2 ........................................................... 9.30

Mean aerodynamic chord, m .................................................... 1.86

Body flap:

Reference area, m 2 .......................................................... 12.54

Mean aerodynamic chord, m .................................................... 2.06
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TABLE II.- OFF-NOMINAL AERODYNAMIC VARIATIONS a

Case Cn8 C18

I

2

3

4

5

6

7

8

9

I0

11

12

13

14

15

16

g

+

+

+

m

+

+

+

+

+

+

+

+

+

+

+

+

+

Cn6 a C
t_a

+ -

+ -

+ -

+ -

- +

- +

- +

- +

+ +

+ +

+ +

+ +

Rudder variations C lCY6r Cn6r 6r

Increased effectiveness + - +

Decreased effectiveness - + -

aA plus sign (+) indicates that aerody-

namic variation is added to the nominal

coefficient. A minus sign (-) indicates that

aerodynamic variation is subtracted from the

nominal coefficient.
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Orbital ground

track

Figure 2.- Entry trajectory of Space Shuttle Orbiter for first flight.
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Figure 3.- Entry-trajectory parameters of Space Shuttle Orbiter for first flight.
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